Thông tin chi tiết | |
Tên tài liệu | Cấu trúc tàu vũ trụ (vệ tinh) |
Tên tiếng anh | Spacecraft Structures |
Thể loại | Sách chuyên khảo |
Giới thiệu cuốn sách |
Chuyến bay vũ trụ (space flight) cần đến nhiều lĩnh vực công nghệ Cuốn sách chuyên khảo này đi sâu vào những khía cạnh thiết kế, phân tích và xây dựng tàu vũ trụ (spacecraft). Theo quan điểm của tác giả, spacecraft bao gồm vệ tinh và phương tiện phóng với sự phân biệt là có người điều khiển hay không có người điều khiển. Trạm Vũ trụ quốc tế (ISS) , trạm MIR, các tàu con thoi của Mỹ và Trạm Vũ trụ của Châu Âu Spacelab là các chuyến bay có người điều khiển, trong khi đó, các vệ tinh thông tin liên lạc, vệ tinh khí tượng là các chuyến bay không có người điều khiển. Cuốn sách này đi sâu vào cấu trúc của tàu vũ trụ không có người, cụ thể là các vệ tinh. Sách không đề cập tới cấu trúc và cách chế tạo các phương tiện phóng. |
Tên tác giả | J.Wijker |
Giới thiệu tác giả | Giáo sư Tiến sỹ Jacob Job Wijker làm việc tại Dutch Space BV (Hà Lan). Ông tham gia giảng dạy chuyên đề Spacecraft Structures trong chương trình cao học tại Khoa Công nghệ Vũ trụ Đại học Công nghệ Delf (Hà Lan). Kinh nghiệm hơn 35 năm trong môi trường công nghiệp và đại học đã được đúc kết trong cuốn sách chuyên khảo này. |
Mục lục | 1 General.- P 1 1.1 Introduction- P 1 1.2 Literature- P 3 2 Design Process- P 5 2.1 Introduction - P 5 2.2 Design criteria - P 5 2.3 Design Specification - P 5 2.4 Design - P 6 2.5 Design control - P 6 2.6 Exercises-P 7 2.6.1 Design and development - P 7 3 Launch Vehicle Systems- P 9 3.1.1 Launch Vehicle User’s manual- P 10 3.2 Literature- P 11 3.3 Exercises- P 11 3.3.1 Definition the mechanical design specification- P 11 4 Spacecraft Subsystem.- P 13 4.1 Introduction- P 13 4.2 Power Supply.- P 14 4.3 Attitude Control System.- P 14 4.4 Data System- P 14 4.5 Thermal Control System.- P 14 4.6 Telecommunication Systems.- P 15 4.7 Propulsion System.- P 15 4.8 Structure.- P 15 4.9 Mutual Interaction of Subsystems- P 15 4.9.1 Power Supply versus Attitude Control System.- P 15 4.9.2 Power Supply versus Thermal Control System- P 16 4.9.3 Attitude Control System versus Thermal Control System- P 16 4.9.4 Thermal Control System versus Structure- P 16 4.10 Literature.- P 17 5 Design and Safety factors- P 19 5.1 Introduction- P 19 5.2 Terminology- P 19 5.2.1 Flight Limit Load- P 19 5.2.2 Design Limit Load- P 19 5.2.3 Ultimate Load- P 20 5.2.4 Buckling Load- P 20 5.2.5 Yield Load- P 20 5.2.6 Proof Load- P 20 5.2.8 Material Strengh- P 20 5.2.9 A-value (A basis)- P 21 5.2.10 B-value (B basis)- P 21 5.2.11 S-value (S-basis)- P 22 5.2.12 Qualification Loads- P 23 5.2.13 Flight Acceptance Loads- P 23 5.2.14 Margin of Safety- P 23 5.2.15 Fail –Safe- P 23 5.2.16 Safe-Life- P 23 5.3 Factors of Safety for Spcecraft- P 24 5.4 Literature- P 25 5.5 Exercises- P 25 5.5.1 Survey of Applied Factors of Safety- P 25 6 Spacecraft Design Loads- P.27 6.1 Introduction.-P.27 6.2 Trasportation load factors-P27 6.3 Steady –State Loads-P.29 6.4 Mechanical Dynamic loads-P 30 6.4.1 Sinusoidal loads- P.30 6.4.2 Random loads-P 38 6.5 Acoustic loads-P 45 6.5.1 Sound Pressure Level-P.46 6.5.2 Octave band-P 49 6.5.3 Centre frequency.-P 49 6.5.4 Relative bandwidth-P 49 6.5.5 Power Spectral Density-P .51 6.5.6 Conversions of SPL-P 52 6.5.7 Acoustic Fill Factor-P 55 6.6 Shock loads- P 56 6.6.1 Introduction-P 56 6.6.2 Enforced acceleration- P 58 6.6.3 Shock Attenuation Rules-P 61 6.6.4 SRS Tolerance Limit-P 62 6.7 Static pressure -P 62 6.8 Micro-meteorites/Orbit Debris-P 63 6.8.1 Introduction.-P 63 6.8.2 Simple Micro Meteoroid Flux Model-P 64 6.8.3 Simple Debris flux Model-P 64 6.9 Literature-P 66 6.10 Exercises-P 66 6.10.1 Sinussoidal Vibrations-P 66 6.10.2 Tune Damper-P 67 6.10.3 Calculation PSD’s and Grms-P 68 6.10.4 Prove of Conversion formulae-P 69 6.10.5 Calculation of OASPL and conversion to 1/3 -octave band-P 69 7.2 Tests-P 71 7.3 Goal of of the Tests-P 72 7.4 Test Plan-P 73 7.5 Test Procedure-P 74 7.6 Model Philosophy-P 74 7.7 Static Test-P 75 7.7.1 Sine burst test-P 76 7.7.2 Sine dwell test.-P 77 7.8 Mechanical Vibration/Acoustic Tests-P 77 7.8.1 Sine Vibration Test-P 78 7.8.2 Random Vibration Test-P 82 7.8.3 Acoustic Vibration Test-P 83 7.8.4 Shock Test-P 85 7.8.5 Modal Survey/Modal Analysis Test-P 85 7.9 Notching-P 86 7.9.1 Notching at Equipment Level-P 86 7.9.2 Notching at main resonances on basis of quasi-staticloads-P 93 7.9.3 Force Limiting Vibration Testing-P 96 7.10 Plots.-P 97 7.11 Test Facilities West-Europe-P 98 7.12 Literature-P 99 8 Design of Spacecraft structure-P 101 8.1 Introduction-P 101 8.2 Determination of Spacecraft Configuration-P 101 8.2.1 Boundary Conditions Launch Vehicle-P 103 8.2.2 Launch mass-P 103 8.2.3 Available Launch Volume-P 103 8.2.4 Launch Vehicle Adapter (LVA)-P 104 8.2.5 Payload Separation System.-P 104 8.2.5 Functional requirements spacecraft-P 105 8.3 First Design Spacecraft Structure-P 105 8.3.1 Design Loads-P 106 8.3.2 Stiffness requirement (natural frequencies)-P 107 8.3.3 Quasi-static loads-P 108 8.3.4 Mass Accelaration Curve (MAC)-P 109 8.3.5 Random Loads-P 110 8.3.6 Factors of Safety-P 110 8.4 Basic Design Supporting Stucture.-P 111 8.4.1 Design criteria.-P 111 8.4.2 Standard Structural elements of spacecraft structures-P 112 8.4.3 Selection of materials.-P 113 8.5 Detailed Analyses-P 116 8.5.1 Finite Element Model-P 117 8.5.2 Finite Element Model Verification-P 117 8.5.3 Finite Element Analyses-P 118 8.6 Manufacturing-P 119 8.7 Testing-P 120 8.8 Literature-P 121 8.9 Exercises-P 121 8.9.1 Use of the User’s Manual of ARIANE 5-P 121 9 Strength and Stiffness of Structural Elements-P 123 9.1 Introduction-P 123 9.2 Trusses and Truss-P 124 9.3 Bending of Beams, Myosotis Method-P 127 9.3.1 Bending of Beams by transverse forces and bending moments-P 127 9.3.2 Buckling of Struts-P 128 9.3.3 Bending stressses in beams-P 133 9.3.4 Shear Stresses in beams-P 134 9.3.5 Torsion of Beams-P 136 9.3.6 Local buckling of thin-walled tubes-P 139 9.3.7 Rings-P 141 9.4 Platforms-P 142 9.5 Panels-P 142 9.6 Shells of revoltion cylinders/cones-P 143 9.6.1 Stability of Cylinders-P 143 9.6.2 Stiffness of Cylinders-P 145 9.6.3 Running Loads in Cylinder.-P 146 9.6.4 Stiffness of Cones.-P 147 9.6.5 Stability of Cones-P 149 9.7 Stresses in Lap Joints-P 150 9.8 Literature-P 151 9.9 Exercises-P 152 9.9.1 Deflection of truss frame-P 152 9.9.2 Deflection of a beam.-P 152 9.9.3 Deflection and bending moment in a clamped- clamped beam-P 153 9.9.4 Buckling of of Beam with Variable Cross-section- P 153 9.9.5 Torsion and shear Force- P 154 9.9.6 Torsion and Shear Force-P 155 9.9.7 Stiffness and Buckling of a Cone-P 155 10 Sandwich Construction-P 157 10.1 Introduction-P 157 10.1.1 Design aspects-P 158 10.2 Optimum design: Determination of core and face sheet thickness for minimum mass-P 159 10.3 Stresses-P 160 10.3.1 Stresses in face sheets-P 161 10.3.2 Shear Stress-P 161 10.3.3 Failure modes-P 162 10.4 Buckling Sandwich Columns-P 163 10.5 Global Buckling Cylinder-P 164 10.6 Local Buckling-P 166 10.6.1 Combined Loads-P 168 10.7 Inserts-P 168 10.8 Honeycomb mechanical properties-P 170 10.9 Typical connections-P 171 10.10 Literature-P 172 10.11 Exercises-P 172 10.11.1 Stiffness Sandwich Beam-P 172 11 Finite Element Analysis.-P 175 11.1 Introduction-P 175 11.2 Theory.-P 175 11.2.1 Static Calculations-P 176 11.2.2 Dynamic Calculations-P 181 11.3 Mathematical Model-P 184 11.4 Finite element type-P 185 11.5 Joints-P 186 11.7 Damping-P 186 11.7.1 Spacecraft-P 188 11.7.2 Launch Vehicles-P 188 11.8 Modifications-P 188 11.9 Finite element model to be delivered-P 189 11.9.1 Coordinate Systems-P 189 11.9.2 Units-P 189 11.9.3 Numbered Schemes-P 190 11.9.4 Reaction forces in case unit forces of inertia occur-P 190 11.9.5 Elastic Energy as Rigid Body-P 190 11.9.6 Reduced finite element model-P 193 11.9.7 Reports regarding the finite element model-P 193 11.9.8 Electronic Carrier-P 194 11.10 Literature-P 195 11.11 Exercises-P 195 11.11.1 Application Lagrange’s Equations-P 195 11.11.2 Deployed natural Frequency-P 196 11.11.3 Natural frequency cantilever beam-P 196 12 Stiffness/Flexxibility Analysis-P 199 12.1 Introduction-P 199 12.2 Examples-P 200 12.2.1 ATV Cargo Carrier-P 200 12.2.2 ARIANE 5 Bati – Moteur (BME)-P 200 12.3 The unit force method-P 201 12.4 Reduced stiffness matrix-P 202 12.5 Unit displacement-P 202 12.6 Principal directions-P 203 12.7 Literature-P 206 12.8 Exercises-P 206 12.8.1 Stiffness Pin-joined Frame-P 206 13 Material Selection-P 207 13.1 Introduction-P 207 13.2 Metal alloys-P 207 13.3 Composite materials-P 208 13.3.1 Physical-mechanical proporties of filters-P 209 13.3.2 Properties of Non-metal Matrices-P 210 13.3.3 Properties of Metal Matrices-P 211 13.4 Sandwich Honeycomb Core-P 211 13.5 Design consideration-P 212 13.6 Literature-P 214 14 Spacecraft Mass-P 215 14.4. Introduction-P 215 14.5. Structure Mass-P 217 14.6. Total Mass Calculation-P 217 14.3.1 Mass Matrix-P 217 14.3.2 Mass Matrix with respect to the centre of mass-P 223 14.3.4 Second Moments of Mass-P 224 14.3.5 Finite Element Model Mass Matrix-P 225 14.4 Literature-P 228 14.5 Exercises-P 228 14.5.1 Finite Element Model Mass Matrix-P 228 15 Natural Frequencies, an Approximation-P 229 15.1 Introduction-P 229 15.2 Static Displacement Method-P 229 15.3 Rayleigh’s Quotient-P 232 15.4 Dunkerley’s Method-P 234 15.5 Literature-P 241 15.6 Exercises-P 241 15.6.1 Natural Frequency of airplane-P 241 15.6.2 Rayleigh’s method-P 241 15.6.3 Rayleigh’s method-P 241 15.6.4 Equations of motion and natural frequencies-P 241 15.6.5 Calculations natural frequencies-P 241 15.6.6 Equations of motion and natural frequencies-P 244 15.6.7 Deployed Natural Frequency-P 245 16 Modal Effective Mass-P 247 16.1 Introduction-P 247 16.2 Enforce Accelaration-P 247 16.3 Modal Effective Masses of an MDOF System-P 250 16.4 Literature-P 259 16.5 Exercises-P 259 16.5.1Large masssolution-P 259 16.5.2 Calculation modal effective masses cantilevered Beam-P 260 16.5.3 Modal Effective Mass of a cantilevered Beam -P 261 16.5.4 Calculation of Base Force-P 262 17 Dynamic Model Reduction Methods-P 265 17. 1 Introduction-P 265 17.2 Static Consideration Method-P 266 17.3 Craig Bampton Reduced Method-P 271 17.4 System Equivalent Reduction Expansion Process (SEREP)-P 274 17.5 Conclusion-P 277 17.6 Literature-P 278 17.7 Exercises-P 278 17.7.1Reduction Finite Element Model-P 278 17.7.2Reduction of dynamic IO DOEmodel-P 279 18 Dynamic Substructuring Component Mode Synthesis-P 281 18.1 Introduction-P 281 18.2 Special CMS Methods-P 282 18.2.1Craig Bampton Fixed Interface Method-P 282 18.2.2Free Interface Method-P 287 18.2.3 General Purpose CMS Method-P 294 18.3 Literature-P 299 18.4 Exercises-P 299 18.4.1 Structure Analysis 1-P 299 18.4.2 Structure Analysis 2-P 300 19 Output Transformation Matrices-P 303 19.1 Introduction-P 303 19.2 Reduced Free-Free Dynamic Model-P 304 19.3 Reference-P 310 19.4 Exercises-P 310 19.4.1 Problem 1-P 310 19.4.2 Problem 2-P 311 20 Coupled Dynamic Loads Analysis-P 313 20.5 Introduction-P 313 20.6 Finite Element Validation-P 315 20.7 Literature-P 318 20.8 Exercises-P 318 20.8.1 Internet search-P 318 21 Random Vibrations Simplified Response Analysis-P 319 21. 1 Introduction-P 319 21.2 Low Frequency-P 319 21.2.1 The response of a single mass-spring system due to a random force or base excitation-P 320 21.2.2 Damping-P 325 21.2.3 Static Assumed Mode Random Vibration Response Analysis-P 325 21.2.4 Passages-P 326 21.2.5 Calculation of the rms stresses/forces-P 329 21.2.6 Reaction Forces-P 333 21.3 Acoustic Analysis-P 334 21.3.1 Introduction-P 334 21.3.2 Acoustic loads transformed into mechanical random vibrations-P 335 21.3.3 Component Vibration Requirements -P 337 21.3.4 Static approach-P 339 21.3.5 The stress in an acoustically loaded panel-P 340 21.4 Literature-P 344 21.5 Exercises-P 345 22 Fatigue Life Prediction-P 349 22.1 Introduction-P 349 22.2 Palgren-Miner Linear Cumulative Damage Rule-P 349 22.3 Analysis of Load-time Histories-P 351 22.4 Failure due to Sinusoidal Vibration-P 353 22.5 Failure due to Narrow-banded Random Vibrations-P 355 22.6 Literature-P 363 22.7 Internet-P 363 22.8 Exercises-P 363 22.8.1 Fatigue life prediction sinusoidal vibration-P 363 22.8.2 Fatigue life prediction random prediction-P 365 23 Shock- Response Spectrum-P 367 23.1 Introduction-P 367 23.2 Enforce Acceleration-P 368 23.3 Numerical Calculation of the SRS, the Piece Wise Exact Method-P 370 23.4 Response Analysis in Combination with Shock- Response Spectra-P 375 23.5 Matching Shock Response with Synthesised Time histories-P 385 23.6 Literature-P 386 23.7 Exercises-P 396 23.7.1 Calculation of Shock response Curves-P 396 23.7.2 Problem 2-P 398 24 Damage to Spacecraft by Meteoroids and Orbital Debris-P 399 24.1 Introduction-P 399 24.2 Micro-Meteroids and Space Debris Environment-P 400 24.2.1 Micro- Meteoroids Environment-P 400 24.2.2 Orbital debris Environment- P 402 24.3 Hyper Velocity Impact Damage Models-P 405 24.3.1 Single Plate Penetration Equations-P 405 24.3.2 Multi –shock shield-P 406 24.4 Probability of Impacts-P 409 24.5 Literature-P 411 25 Prescribed Averaged Temperatures-P 413 25.1 Introduction-P 413 25.2 PAT method-P 413 25.3 PAT Method Applied to a Simplified Solar Array-P 418 25.4 Literature-P 430 25.5 Exercises-P 430 25.5.1 Temperature interpolation in finite element model-P 430 26 Thermal-elastic Stresses-P 433 26.1 Introduction-P 433 26.2 Material Properties-P 439 26.3 Literature-P 440 26.4 Exercises-P 440 26.4.1 Thermal stress in beam-P 440 26.4.2 Self Strained Structure-P 440 27 Coefficients of thermal & moisture expansion-P 443 27.1 Introduction-P 443 27.2 Coefficients of Thermal expansion-P 443 27.2.1 The CTE as a derivative of the thermal expansibility-P 443 27.2.2 The Secant CTE-P 444 27.3 Moisture coefficient of expansion (CME)-P 445 28 Venting Holes- P 447 28.1 Introduction- P 447 28.2 Venting Holes- P 447 28.2.1 Beryline method- P 447 28.2.2 The convergent Nozzle- P 449 28.2.3 Rule of Thumb- P 450 28.3 Literature- P 451 29 Examples- P 453 29.1 Introduction- P 453 29.2 Natural Frequencies as Approximation- P 454 29.2.1 Displacement- P 454 29.3 Design Example Fixed –Free Beam- P 455 29.3.1 Introduction- P 455 29.3.2 Stiffness Calculation- P 456 29.3.3 Strength Calculation- P 458 29.3.4 Effective stress- P 459 29.3.5 Iterations- P 460 29.4 Equivalent Dynamic systems- P 462 29.4.1 Introduction- P 462 29.5 Random Vibrations- P 464 29.5.1 Comparison of two random vibration specifications- P 464 29.5.2 Enforced random Acceleration.- P 467 29.6 Strengh and Stiffness Analysis SIMPSAT-P 476 29.6.1 Introduction-P 476 29.6.2 Design Philosophy-P 477 29.6.3 Quasi -Static Loads (QSL)-P 478 29.6.4 Minimum Natural Frequencies-P 478 29.6.5 Material properties-P 478 29.6.6 Natural Frequencies-P 478 29.6.7 Selection of the type of Structure-P 481 29.6.8 Strength aspects-P 482 29.6.9 Summary MS values-P 487 29.7 Stiffness calculations using Castigliano’s second therem-P 487 29.8 Modal Effective Mass of a cantilevered Beam-P 490 29.9 Components Mode Synthesis (Craig –Bampton method)-P 492 Subjects Index-P 497 |
Nhà xuất bản | Springer |
Năm xuất bản | 2008 |
Chú thích | Sách dày 504 trang. |