Cấu trúc tàu vũ trụ (vệ tinh)

Thông tin chi tiết
Tên tài liệu Cấu trúc tàu vũ trụ (vệ tinh)
Tên tiếng anh Spacecraft Structures
Thể loại Sách chuyên khảo
Giới thiệu cuốn sách
Ảnh đang tải lên

Chuyến bay vũ trụ (space flight) cần đến nhiều lĩnh vực công nghệ  Cuốn sách chuyên khảo này đi sâu vào những khía cạnh thiết kế, phân tích và xây dựng tàu vũ trụ (spacecraft). Theo quan điểm của tác giả, spacecraft bao gồm  vệ tinh và phương tiện phóng với sự phân biệt là có người điều khiển hay không có người điều khiển. Trạm Vũ trụ quốc tế (ISS) , trạm MIR, các tàu con thoi của Mỹ và Trạm Vũ trụ của Châu Âu Spacelab là các chuyến bay có người điều khiển, trong khi đó, các vệ tinh thông tin liên lạc, vệ tinh khí tượng  là các chuyến bay không có người điều khiển.

 Cuốn sách này đi sâu vào cấu trúc của  tàu vũ trụ không có người, cụ thể là các vệ tinh. Sách không đề cập tới cấu trúc và cách chế tạo các phương tiện phóng.       

Tên tác giả J.Wijker
Giới thiệu tác giả Giáo sư Tiến sỹ Jacob Job Wijker làm việc tại Dutch Space BV (Hà Lan). Ông tham gia giảng dạy chuyên đề Spacecraft Structures trong chương trình cao học tại Khoa Công nghệ Vũ trụ Đại học Công nghệ Delf (Hà Lan). Kinh nghiệm hơn 35 năm trong môi trường công nghiệp và đại học đã được đúc kết trong cuốn sách chuyên khảo này.
Mục lục 1    General.- P 1
1.1    Introduction- P 1
1.2    Literature- P 3

2    Design Process- P 5
2.1    Introduction - P 5
2.2    Design criteria - P 5
2.3    Design Specification - P 5
2.4    Design - P 6
2.5    Design control - P 6
2.6    Exercises-P 7
2.6.1    Design and development - P 7

3    Launch Vehicle Systems- P 9
3.1.1    Launch Vehicle User’s manual- P 10
3.2    Literature- P 11
3.3    Exercises- P 11
3.3.1    Definition the mechanical design specification- P 11

4    Spacecraft Subsystem.- P 13
4.1    Introduction- P 13
4.2    Power Supply.- P 14
4.3    Attitude Control System.- P 14
4.4    Data System- P 14
4.5    Thermal Control System.- P 14
4.6    Telecommunication Systems.- P 15
4.7    Propulsion System.- P 15
4.8    Structure.- P 15
4.9    Mutual Interaction of Subsystems- P 15
4.9.1    Power Supply versus Attitude Control System.- P 15
4.9.2    Power Supply versus Thermal Control System- P 16
4.9.3    Attitude Control System versus Thermal Control System- P 16
4.9.4    Thermal Control System versus Structure- P 16
4.10    Literature.- P 17

5    Design and Safety factors- P 19
5.1    Introduction- P 19
5.2    Terminology- P 19
5.2.1        Flight Limit Load- P 19
5.2.2        Design Limit Load- P 19
5.2.3        Ultimate Load- P 20
5.2.4        Buckling Load- P 20
5.2.5        Yield Load- P 20
5.2.6        Proof Load- P 20
5.2.8        Material Strengh- P 20
5.2.9        A-value (A basis)- P 21
5.2.10      B-value (B basis)- P 21
5.2.11      S-value (S-basis)- P 22
5.2.12      Qualification Loads- P 23
5.2.13      Flight Acceptance Loads- P 23
5.2.14      Margin of Safety- P 23
5.2.15      Fail –Safe- P 23
5.2.16      Safe-Life- P 23
5.3           Factors of Safety for Spcecraft- P 24
5.4           Literature- P 25
5.5           Exercises- P 25
5.5.1        Survey of Applied Factors of Safety- P 25
 
6    Spacecraft Design Loads- P.27
6.1    Introduction.-P.27
6.2    Trasportation load factors-P27
6.3    Steady –State Loads-P.29
6.4    Mechanical Dynamic loads-P 30
6.4.1        Sinusoidal loads- P.30
6.4.2        Random loads-P 38
6.5           Acoustic loads-P 45
6.5.1        Sound Pressure Level-P.46
6.5.2        Octave band-P 49
6.5.3        Centre frequency.-P 49
6.5.4        Relative bandwidth-P 49
6.5.5        Power Spectral Density-P .51
6.5.6        Conversions of SPL-P 52
6.5.7        Acoustic Fill Factor-P 55
6.6           Shock loads- P 56
6.6.1        Introduction-P 56
6.6.2        Enforced acceleration- P 58
6.6.3        Shock Attenuation Rules-P 61
6.6.4        SRS Tolerance Limit-P 62
6.7           Static pressure -P 62
6.8           Micro-meteorites/Orbit Debris-P 63
6.8.1        Introduction.-P 63
6.8.2        Simple Micro Meteoroid Flux Model-P 64
6.8.3        Simple Debris flux Model-P 64
6.9           Literature-P 66
6.10         Exercises-P 66
6.10.1      Sinussoidal Vibrations-P 66
6.10.2      Tune Damper-P 67
6.10.3      Calculation PSD’s and Grms-P 68
6.10.4      Prove of Conversion formulae-P 69
6.10.5      Calculation of OASPL and conversion to 1/3 -octave band-P 69
7.2    Tests-P 71
7.3    Goal of of the Tests-P 72
7.4    Test Plan-P 73
7.5    Test Procedure-P 74
7.6    Model Philosophy-P 74
7.7    Static Test-P 75
7.7.1    Sine burst test-P 76
7.7.2    Sine dwell test.-P 77
7.8    Mechanical Vibration/Acoustic Tests-P 77
7.8.1    Sine Vibration Test-P 78
7.8.2    Random Vibration Test-P 82
7.8.3    Acoustic Vibration  Test-P 83
7.8.4    Shock Test-P 85
7.8.5    Modal Survey/Modal Analysis Test-P 85               
7.9    Notching-P 86
7.9.1    Notching at Equipment Level-P 86
7.9.2    Notching at main resonances on basis of quasi-staticloads-P 93
7.9.3        Force Limiting Vibration Testing-P 96
7.10         Plots.-P 97
7.11         Test Facilities West-Europe-P 98
7.12          Literature-P 99

8              Design of Spacecraft structure-P 101
8.1           Introduction-P 101
8.2           Determination of Spacecraft Configuration-P 101
8.2.1        Boundary Conditions Launch Vehicle-P 103
8.2.2        Launch mass-P 103
8.2.3        Available Launch Volume-P 103
8.2.4        Launch Vehicle Adapter (LVA)-P 104
8.2.5        Payload Separation System.-P 104
8.2.5        Functional requirements spacecraft-P 105
8.3           First Design Spacecraft Structure-P 105
8.3.1        Design Loads-P 106
8.3.2        Stiffness  requirement (natural frequencies)-P 107
8.3.3        Quasi-static loads-P 108
8.3.4        Mass Accelaration Curve (MAC)-P 109
8.3.5        Random Loads-P 110
8.3.6        Factors of Safety-P 110
8.4           Basic Design Supporting Stucture.-P 111
8.4.1        Design criteria.-P 111
8.4.2        Standard Structural elements of spacecraft  structures-P 112
8.4.3        Selection of materials.-P 113
8.5           Detailed Analyses-P 116
8.5.1        Finite Element Model-P 117
8.5.2        Finite Element Model Verification-P 117
8.5.3        Finite Element Analyses-P 118
8.6           Manufacturing-P 119
8.7           Testing-P 120
8.8            Literature-P 121
8.9            Exercises-P 121
8.9.1     Use of the User’s Manual of ARIANE 5-P 121

9               Strength and Stiffness of Structural Elements-P 123
9.1            Introduction-P 123
9.2            Trusses and Truss-P 124
9.3            Bending of Beams, Myosotis Method-P 127
9.3.1         Bending of Beams by transverse forces and bending moments-P 127
9.3.2         Buckling of Struts-P 128
9.3.3         Bending stressses in beams-P 133
9.3.4         Shear Stresses in beams-P 134
9.3.5         Torsion of Beams-P 136
9.3.6         Local buckling of thin-walled tubes-P 139
9.3.7         Rings-P 141
9.4            Platforms-P 142
9.5            Panels-P 142
9.6            Shells of revoltion cylinders/cones-P 143
9.6.1         Stability of Cylinders-P 143
9.6.2         Stiffness of Cylinders-P 145
9.6.3         Running Loads in Cylinder.-P 146
9.6.4         Stiffness of Cones.-P 147
9.6.5         Stability of Cones-P 149
9.7            Stresses in Lap Joints-P 150
9.8            Literature-P 151
9.9            Exercises-P 152
9.9.1        Deflection of truss frame-P 152
9.9.2        Deflection of a beam.-P 152
9.9.3        Deflection and bending moment in a clamped- clamped beam-P 153
9.9.4        Buckling of of Beam with Variable  Cross-section- P 153
9.9.5        Torsion and shear Force- P 154
9.9.6        Torsion and Shear Force-P 155
9.9.7        Stiffness and Buckling of a Cone-P 155
     
10    Sandwich Construction-P 157
10.1         Introduction-P 157
10.1.1      Design aspects-P 158
10.2         Optimum design: Determination of core and face
                sheet thickness for minimum mass-P 159
10.3         Stresses-P 160
10.3.1      Stresses in face sheets-P 161
10.3.2      Shear Stress-P 161
10.3.3      Failure modes-P 162
10.4         Buckling Sandwich Columns-P 163
10.5         Global Buckling Cylinder-P 164
10.6         Local Buckling-P 166
10.6.1      Combined Loads-P 168
10.7         Inserts-P 168
10.8         Honeycomb mechanical properties-P 170
10.9         Typical connections-P 171
10.10       Literature-P 172
10.11       Exercises-P 172
10.11.1    Stiffness Sandwich Beam-P 172

11            Finite Element Analysis.-P 175
11.1         Introduction-P 175
11.2        Theory.-P 175
11.2.1     Static Calculations-P 176
11.2.2     Dynamic Calculations-P 181
11.3        Mathematical Model-P 184
11.4        Finite element type-P 185
11.5       Joints-P 186
11.7       Damping-P 186
11.7.1    Spacecraft-P 188
11.7.2    Launch Vehicles-P 188
11.8       Modifications-P 188
11.9       Finite element model to be delivered-P 189
11.9.1    Coordinate Systems-P 189
11.9.2    Units-P 189
11.9.3    Numbered Schemes-P 190
11.9.4    Reaction forces in case unit forces of inertia occur-P 190
11.9.5    Elastic Energy as Rigid Body-P 190
11.9.6    Reduced finite element model-P 193
11.9.7    Reports regarding the finite element model-P 193
11.9.8    Electronic Carrier-P 194
11.10     Literature-P 195
11.11     Exercises-P 195
11.11.1  Application Lagrange’s Equations-P 195
11.11.2  Deployed natural Frequency-P 196
11.11.3  Natural frequency cantilever beam-P 196

12         Stiffness/Flexxibility Analysis-P 199
12.1      Introduction-P 199
12.2      Examples-P 200
12.2.1   ATV Cargo Carrier-P 200
12.2.2   ARIANE 5 Bati – Moteur (BME)-P 200
12.3     The unit force method-P 201
12.4     Reduced stiffness matrix-P 202
12.5     Unit displacement-P 202
12.6    Principal directions-P 203
12.7    Literature-P 206
12.8    Exercises-P 206
12.8.1  Stiffness Pin-joined Frame-P 206

13       Material Selection-P 207
13.1    Introduction-P 207
13.2    Metal alloys-P 207
13.3    Composite materials-P 208
13.3.1 Physical-mechanical proporties of filters-P 209
13.3.2 Properties of Non-metal Matrices-P 210
13.3.3 Properties of Metal Matrices-P 211
13.4    Sandwich Honeycomb Core-P 211
13.5    Design consideration-P 212
13.6    Literature-P 214

14      Spacecraft Mass-P 215
14.4.  Introduction-P 215
14.5.  Structure Mass-P 217
14.6.  Total Mass Calculation-P 217
14.3.1 Mass Matrix-P 217
14.3.2 Mass Matrix with respect to the centre of mass-P 223
14.3.4  Second Moments of Mass-P 224
14.3.5 Finite Element Model Mass Matrix-P 225
14.4    Literature-P 228
14.5    Exercises-P 228
14.5.1 Finite Element Model Mass Matrix-P 228

15       Natural Frequencies, an Approximation-P 229
15.1    Introduction-P 229
15.2    Static Displacement Method-P 229
15.3    Rayleigh’s Quotient-P 232
15.4    Dunkerley’s Method-P 234
15.5    Literature-P 241
15.6    Exercises-P 241
15.6.1 Natural Frequency of airplane-P 241
15.6.2 Rayleigh’s method-P 241
15.6.3 Rayleigh’s method-P 241
15.6.4 Equations of motion and natural frequencies-P 241
15.6.5 Calculations  natural frequencies-P 241
15.6.6 Equations of motion and natural frequencies-P 244
15.6.7 Deployed Natural Frequency-P 245

16      Modal Effective Mass-P 247
16.1   Introduction-P 247
16.2   Enforce Accelaration-P 247
16.3   Modal Effective Masses of an MDOF System-P 250
16.4   Literature-P 259
16.5   Exercises-P 259
16.5.1Large masssolution-P 259
16.5.2 Calculation modal effective masses cantilevered Beam-P 260
16.5.3 Modal Effective Mass of a cantilevered Beam -P 261
16.5.4 Calculation of Base Force-P 262

17     Dynamic Model Reduction Methods-P 265
17. 1 Introduction-P 265
17.2  Static Consideration Method-P 266
17.3  Craig Bampton Reduced Method-P 271
17.4  System Equivalent Reduction Expansion Process  (SEREP)-P 274
17.5  Conclusion-P 277
17.6  Literature-P 278
17.7  Exercises-P 278
17.7.1Reduction Finite Element Model-P 278
17.7.2Reduction of dynamic IO DOEmodel-P 279

18      Dynamic  Substructuring Component Mode Synthesis-P 281
18.1   Introduction-P 281
18.2   Special CMS Methods-P 282
18.2.1Craig Bampton Fixed Interface Method-P 282
18.2.2Free Interface  Method-P 287
18.2.3 General Purpose CMS Method-P 294
18.3   Literature-P 299
18.4   Exercises-P 299
18.4.1 Structure Analysis 1-P 299
18.4.2 Structure Analysis  2-P 300

19    Output Transformation Matrices-P 303
19.1 Introduction-P 303
19.2 Reduced Free-Free Dynamic Model-P 304
19.3 Reference-P 310
19.4 Exercises-P 310
19.4.1 Problem 1-P 310
19.4.2  Problem 2-P 311
 
20    Coupled Dynamic Loads Analysis-P 313
20.5    Introduction-P 313
20.6    Finite Element Validation-P 315
20.7    Literature-P 318
20.8    Exercises-P 318
20.8.1    Internet search-P 318
    
21       Random Vibrations Simplified Response Analysis-P 319
21. 1   Introduction-P 319
21.2    Low Frequency-P 319
21.2.1 The response of a single mass-spring system due to a random
            force or base excitation-P 320
21.2.2  Damping-P 325
21.2.3  Static Assumed Mode Random Vibration
            Response Analysis-P 325
21.2.4  Passages-P 326
21.2.5 Calculation of the rms stresses/forces-P 329
21.2.6 Reaction Forces-P 333
21.3    Acoustic Analysis-P 334
21.3.1 Introduction-P 334
21.3.2 Acoustic loads transformed into  mechanical random vibrations-P 335
21.3.3 Component Vibration Requirements -P 337
21.3.4 Static approach-P 339
21.3.5 The stress in an acoustically loaded panel-P 340
21.4    Literature-P 344
21.5    Exercises-P 345

22        Fatigue Life Prediction-P 349
22.1     Introduction-P 349
22.2     Palgren-Miner Linear Cumulative Damage Rule-P 349
22.3     Analysis of Load-time Histories-P 351
22.4     Failure due to Sinusoidal Vibration-P 353
22.5     Failure due to Narrow-banded Random Vibrations-P 355
22.6     Literature-P 363
22.7     Internet-P 363
22.8     Exercises-P 363
22.8.1  Fatigue life prediction sinusoidal vibration-P 363
22.8.2  Fatigue life prediction random prediction-P 365

23    Shock- Response Spectrum-P 367
23.1    Introduction-P 367
23.2    Enforce Acceleration-P 368
23.3    Numerical Calculation of the SRS, the Piece Wise Exact Method-P 370
23.4    Response Analysis  in Combination  with Shock- Response Spectra-P 375
23.5    Matching Shock Response with Synthesised Time histories-P 385
23.6    Literature-P 386
23.7    Exercises-P 396
23.7.1    Calculation of Shock  response Curves-P 396
23.7.2    Problem 2-P 398

24    Damage to Spacecraft by Meteoroids and Orbital Debris-P 399
24.1         Introduction-P 399
24.2         Micro-Meteroids and Space Debris Environment-P 400
24.2.1      Micro- Meteoroids Environment-P 400
24.2.2      Orbital debris Environment- P 402
24.3         Hyper Velocity Impact Damage Models-P 405
24.3.1      Single Plate Penetration Equations-P 405
24.3.2      Multi –shock shield-P 406
24.4         Probability of Impacts-P 409
24.5         Literature-P 411

25    Prescribed Averaged Temperatures-P 413
25.1         Introduction-P 413
25.2         PAT method-P 413
25.3         PAT  Method Applied to a Simplified Solar Array-P 418
25.4         Literature-P 430
25.5         Exercises-P 430
25.5.1     Temperature interpolation in finite element model-P 430

26    Thermal-elastic Stresses-P 433
26.1          Introduction-P 433
26.2          Material Properties-P 439
26.3          Literature-P 440
26.4          Exercises-P 440
26.4.1       Thermal stress in beam-P 440
26.4.2       Self Strained Structure-P 440
     
27             Coefficients of thermal & moisture expansion-P 443
27.1          Introduction-P 443
27.2          Coefficients of Thermal expansion-P 443
27.2.1       The CTE as a derivative of the thermal expansibility-P 443
27.2.2      The Secant CTE-P 444
27.3           Moisture coefficient of expansion (CME)-P 445

28            Venting Holes- P 447
28.1    Introduction- P 447
28.2    Venting Holes- P 447
28.2.1      Beryline method- P 447
28.2.2      The convergent Nozzle- P 449
28.2.3      Rule of Thumb- P 450
28.3         Literature- P 451
 
29            Examples- P 453
29.1         Introduction- P 453
29.2         Natural Frequencies as Approximation- P 454
29.2.1      Displacement- P 454
29.3         Design Example Fixed –Free Beam- P 455
29.3.1      Introduction- P 455
29.3.2      Stiffness Calculation- P 456
29.3.3      Strength Calculation- P 458
29.3.4      Effective stress- P 459
29.3.5      Iterations- P 460
29.4         Equivalent Dynamic systems- P 462
29.4.1      Introduction- P 462
29.5         Random Vibrations- P 464
29.5.1      Comparison of two random vibration specifications- P 464
29.5.2      Enforced random Acceleration.- P 467
29.6         Strengh and Stiffness Analysis SIMPSAT-P 476
29.6.1      Introduction-P 476
29.6.2      Design Philosophy-P 477
29.6.3      Quasi -Static Loads (QSL)-P 478
29.6.4      Minimum Natural Frequencies-P 478
29.6.5      Material properties-P 478
29.6.6      Natural Frequencies-P 478
29.6.7      Selection of the type of Structure-P 481
29.6.8      Strength aspects-P 482
29.6.9      Summary MS values-P 487
29.7         Stiffness calculations using Castigliano’s second therem-P 487
29.8         Modal Effective Mass of a cantilevered Beam-P 490
29.9        Components Mode  Synthesis (Craig –Bampton method)-P 492
        
Subjects Index-P  497
 
Nhà xuất bản Springer
Năm xuất bản 2008
Chú thích Sách dày 504 trang.